Induced surfaces and their integrable dynamics. II. Generalized Weierstrass representations in 4D spaces and

نویسنده

  • B. G. Konopelchenko
چکیده

Induced surfaces and their integrable dynamics. II. Generalized Weierstrass representations in 4D spaces and deformations via DS hierarchy. Abstract Extensions of the generalized Weierstrass representation to generic surfaces in 4D Euclidean and pseudo-Euclidean spaces are given. Geometric characteristics of surfaces are calculated. It is shown that integrable deformations of such induced surfaces are generated by the Davey-Stewartson hierarchy. Geometrically these deformations are characterized by the in-variance of an infinite set of functionals over surface. The Willmore functional (the total squared mean curvature) is the simplest of them. Various particular classes of surfaces and their integrable deformations are considered .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. D G ] 2 3 Ju l 1 99 8 Weierstrass representations for surfaces in 4 D spaces and their integrable deformations via DS hierarchy

Generalized Weierstrass representations for generic surfaces confor-mally immersed into four-dimensional Euclidean and pseudo-Euclidean spaces of different signatures are presented. Integrable deformations of surfaces in these spaces generated by the Davey-Stewartson hierarchy of integrable equations are proposed. Willmore functional of a surface is invariant under such deformations.

متن کامل

Ju l 1 99 9 Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces

Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.

متن کامل

M ay 1 99 8 Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces

Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.

متن کامل

Weierstrass representation for surfaces in multidimensional Riemann spaces

Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.

متن کامل

Two-wavelet constants for square integrable representations of G/H

In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998